Relative water content retrieval and refined classification of hyperspectral images based on a symbiotic neural network
نویسندگان
چکیده
深度å¦ä¹ å¨é«å è°±å¾åå¤çé¢åçç 究åºç¨ä¸ææ·±å ¥åå±ï¼åºäºæ·±åº¦å¦ä¹ çé«å è°±å¾åå类达å°äºè¾é«çå类精度ãç®åçå类模åå¤å©ç¨é«å è°±çå¾è°±ç¹å¾ï¼ä½å¯¹å è°±çè¯ææ§ç¹å¾åå éªä¿¡æ¯å©ç¨ä¸è¶³ï¼å¯¹ç©ºè°±ç¹å¾æåè¿ç¨é¾ä»¥å®ç°ææååï¼å è导è´å类类å«å³ç±»å åç±»ä¸å¤ç²¾ç»ã为äºè§£å³ä»¥ä¸é®é¢ï¼æ¬ææåºä¸ç§ä»¥å¤æ ç¾æ°æ®ä¸ºè¾å ¥çå ±çç¥ç»ç½ç»æ¨¡åï¼å¨é«å è°±å¾è°±ç¹å¾æåçåºç¡ä¸èåå è°±è¯æç¹å¾ï¼å®ç°ç¸å¯¹å«æ°´éåæ¼åç²¾ç»åç±»ãé¦å ï¼éè¿æ建ä¸ç§æ°ç红边æçå è°±ææ°å®ç°é«å è°±å¾åç¸å¯¹å«æ°´éç表å¾ï¼å©ç¨æ¬ææåºçèªéåºå级ç®æ³å®æç¸å¯¹å«æ°´éåæ¼å¹¶å»ºç«å¯¹åºçç级æ ç¾ï¼ä¸å°ç©ç§ç±»æ ç¾å ±åææå¤æ ç¾é«å è°±æ°æ®éãç¶åï¼æå»ºå ±çç¥ç»ç½ç»æ¶æåå é¨åç»´ç¹å¾æå模åï¼å©ç¨å¤æ ç¾æ°æ®æåé«å è°±å¾åä¸ç©ºé´ãå è°±åç¸å¯¹å«æ°´éçèåç¹å¾ï¼æé«æ·±åº¦æ¨¡å对ä¸åå«æ°´éå°ç©çåºåè½åå对ææåç¹å¾çåå表达è½åï¼éä½æ¨¡åçå¤æ度ä¸è®¡ç®éï¼å®æåºäºå¤æ ç¾æ°æ®éçç¸å¯¹å«æ°´éåæ¼å¼å¯¼åç±»çè¿ç¨ï¼å¨æ©å¤§ä¼ ç»ç±»é´è·ç¦»çåºç¡ä¸è¿ä¸æ¥æ©å¤§ç±»å è·ç¦»ï¼ä»èå®ç°é«å è°±å¾åçç²¾ç»åç±»ãæåï¼ä½¿ç¨å®éªå®¤ééæ°æ®å4ä¸ªå ¬å¼çé«å è°±æ°æ®éLopexãIndian PinesãPavia UniversityåSalinasè¿è¡å®éªéªè¯ãç»æ表æï¼æ¬ææåºç红边æçå è°±ææ°å¯ä»¥ææ表å¾å°ç©çç¸å¯¹å«æ°´éä¿¡æ¯ï¼ç¸å¯¹å«æ°´éåæ¼å¼å¯¼çå类模å对类å å类精度æè¾ææ¾çæåï¼å¯¹æ»ä½åç±»ç»ææä¸å®çæ¹åï¼ä¸å ¶ä»æºå¨å¦ä¹ å深度å¦ä¹ åç±»ç®æ³ç¸æ¯ï¼æ¬æç®æ³åå¾äºè¾å¥½çåç±»ç»æï¼æé«äºæ·±åº¦å类模åçåç±»æ§è½åç²¾ç»ç¨åº¦ï¼å®ç°äºç²¾ç»åç±»ã
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملContent-based Retrieval of Medical Images with Relative Entropy
Medical image databases are growing at a rapid rate because of the increase in digital medical imaging modalities and the deployment of Picture Archiving and Communication Systems (PACS), Electronic Medical Records (EMR) and telemedicine applications. There is growing research interest in Content-Based Image Retrieval (CBIR) of medical images from such digital archives. A new distance function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of remote sensing
سال: 2021
ISSN: ['1007-4619', '2095-9494']
DOI: https://doi.org/10.11834/jrs.20219359