Relative water content retrieval and refined classification of hyperspectral images based on a symbiotic neural network

نویسندگان

چکیده

æ·±åº¦å­¦ä¹ åœ¨é«˜å ‰è°±å›¾åƒå¤„ç†é¢†åŸŸçš„ç ”ç©¶åº”ç”¨ä¸æ–­æ·±å ¥å‘å±•ï¼ŒåŸºäºŽæ·±åº¦å­¦ä¹ çš„é«˜å ‰è°±å›¾åƒåˆ†ç±»è¾¾åˆ°äº†è¾ƒé«˜çš„åˆ†ç±»ç²¾åº¦ã€‚ç›®å‰çš„åˆ†ç±»æ¨¡åž‹å¤šåˆ©ç”¨é«˜å ‰è°±çš„å›¾è°±ç‰¹å¾ï¼Œä½†å¯¹å ‰è°±çš„è¯Šæ–­æ€§ç‰¹å¾åŠå ˆéªŒä¿¡æ¯åˆ©ç”¨ä¸è¶³ï¼Œå¯¹ç©ºè°±ç‰¹å¾æå–è¿‡ç¨‹éš¾ä»¥å®žçŽ°æœ‰æ•ˆååŒï¼Œå› è€Œå¯¼è‡´åˆ†ç±»ç±»åˆ«å³ç±»å† åˆ†ç±»ä¸å¤Ÿç²¾ç»†ã€‚ä¸ºäº†è§£å†³ä»¥ä¸Šé—®é¢˜ï¼Œæœ¬æ–‡æå‡ºä¸€ç§ä»¥å¤šæ ‡ç­¾æ•°æ®ä¸ºè¾“å ¥çš„å ±ç”Ÿç¥žç»ç½‘ç»œæ¨¡åž‹ï¼Œåœ¨é«˜å ‰è°±å›¾è°±ç‰¹å¾æå–çš„åŸºç¡€ä¸Šèžåˆå ‰è°±è¯Šæ–­ç‰¹å¾ï¼Œå®žçŽ°ç›¸å¯¹å«æ°´é‡åæ¼”åŠç²¾ç»†åˆ†ç±»ã€‚é¦–å ˆï¼Œé€šè¿‡æž„å»ºä¸€ç§æ–°çš„çº¢è¾¹æ–œçŽ‡å ‰è°±æŒ‡æ•°å®žçŽ°é«˜å ‰è°±å›¾åƒç›¸å¯¹å«æ°´é‡çš„è¡¨å¾ï¼Œåˆ©ç”¨æœ¬æ–‡æå‡ºçš„è‡ªé€‚åº”åˆ†çº§ç®—æ³•å®Œæˆç›¸å¯¹å«æ°´é‡åæ¼”å¹¶å»ºç«‹å¯¹åº”çš„ç­‰çº§æ ‡ç­¾ï¼Œä¸Žåœ°ç‰©ç§ç±»æ ‡ç­¾å ±åŒæž„æˆå¤šæ ‡ç­¾é«˜å ‰è°±æ•°æ®é›†ã€‚ç„¶åŽï¼Œæž„å»ºå ±ç”Ÿç¥žç»ç½‘ç»œæž¶æž„åŠå† éƒ¨å˜ç»´ç‰¹å¾æå–æ¨¡å—ï¼Œåˆ©ç”¨å¤šæ ‡ç­¾æ•°æ®æå–é«˜å ‰è°±å›¾åƒä¸­ç©ºé—´ã€å ‰è°±å’Œç›¸å¯¹å«æ°´é‡çš„èžåˆç‰¹å¾ï¼Œæé«˜æ·±åº¦æ¨¡åž‹å¯¹ä¸åŒå«æ°´é‡åœ°ç‰©çš„åŒºåˆ†èƒ½åŠ›å’Œå¯¹æ‰€æå–ç‰¹å¾çš„ååŒè¡¨è¾¾èƒ½åŠ›ï¼Œé™ä½Žæ¨¡åž‹çš„å¤æ‚åº¦ä¸Žè®¡ç®—é‡ï¼Œå®ŒæˆåŸºäºŽå¤šæ ‡ç­¾æ•°æ®é›†çš„ç›¸å¯¹å«æ°´é‡åæ¼”å¼•å¯¼åˆ†ç±»çš„è¿‡ç¨‹ï¼Œåœ¨æ‰©å¤§ä¼ ç»Ÿç±»é—´è·ç¦»çš„åŸºç¡€ä¸Šè¿›ä¸€æ­¥æ‰©å¤§ç±»å† è·ç¦»ï¼Œä»Žè€Œå®žçŽ°é«˜å ‰è°±å›¾åƒçš„ç²¾ç»†åˆ†ç±»ã€‚æœ€åŽï¼Œä½¿ç”¨å®žéªŒå®¤é‡‡é›†æ•°æ®å’Œ4ä¸ªå ¬å¼€çš„é«˜å ‰è°±æ•°æ®é›†Lopex、Indian Pines、Pavia University和Salinasè¿›è¡Œå®žéªŒéªŒè¯ã€‚ç»“æžœè¡¨æ˜Žï¼Œæœ¬æ–‡æå‡ºçš„çº¢è¾¹æ–œçŽ‡å ‰è°±æŒ‡æ•°å¯ä»¥æœ‰æ•ˆè¡¨å¾åœ°ç‰©çš„ç›¸å¯¹å«æ°´é‡ä¿¡æ¯ï¼›ç›¸å¯¹å«æ°´é‡åæ¼”å¼•å¯¼çš„åˆ†ç±»æ¨¡åž‹å¯¹ç±»å† åˆ†ç±»ç²¾åº¦æœ‰è¾ƒæ˜Žæ˜¾çš„æå‡ï¼Œå¯¹æ€»ä½“åˆ†ç±»ç»“æžœæœ‰ä¸€å®šçš„æ”¹å–„ï¼›ä¸Žå ¶ä»–æœºå™¨å­¦ä¹ å’Œæ·±åº¦å­¦ä¹ åˆ†ç±»ç®—æ³•ç›¸æ¯”ï¼Œæœ¬æ–‡ç®—æ³•å–å¾—äº†è¾ƒå¥½çš„åˆ†ç±»ç»“æžœï¼Œæé«˜äº†æ·±åº¦åˆ†ç±»æ¨¡åž‹çš„åˆ†ç±»æ€§èƒ½å’Œç²¾ç»†ç¨‹åº¦ï¼Œå®žçŽ°äº†ç²¾ç»†åˆ†ç±»ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Content-based Retrieval of Medical Images with Relative Entropy

Medical image databases are growing at a rapid rate because of the increase in digital medical imaging modalities and the deployment of Picture Archiving and Communication Systems (PACS), Electronic Medical Records (EMR) and telemedicine applications. There is growing research interest in Content-Based Image Retrieval (CBIR) of medical images from such digital archives. A new distance function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2021

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20219359